Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[104]

(define dy (stream-map f y))

y)

Эта процедура не работает, потому что вызов integral в первой строке solve требует, чтобы был определен входной поток dy, а это происходит только во второй строке процедуры solve.

С другой стороны, замысл, заключенный в этом определении, вполне здрав, поскольку мы можем, в принципе, начать порождать поток y и не зная dy. Действительно, integral и многие другие операции над потоками обладают свойствами, подобными cons-stream, а именно, мы можем породить часть ответа, даже если нам дана только частичная информация об аргументах. В случае integral, первый элемент выходного потока есть указанное начальное значение initial-value. Таким образом, можно породить первый элемент выходного потока и не вычисляя интегрируемую величину dy. А раз мы знаем первый элемент y, то stream-map во второй строке solve может начать работать и породить первый элемент dy, а с его помощью мы получим второй элемент y, и так далее.

Чтобы воспользоваться этой идеей, переопределим integral так, чтобы он ожидал интегрируемый поток в виде задержанного аргумента (delayed argument). Integral будет размораживать вычисление входного потока через force только тогда, когда ему нужно породить элементы входного потока помимо первого:

(define (integral delayed-integrand initial-value dt) (define int

(cons-stream initial-value

(let ((integrand (force delayed-integrand))) (add-streams (scale-stream integrand dt)

int))))

int)

Теперь можно реализовать процедуру solve, задержав вычисление dy внутри определения y:71

(define (solve f y0 dt)

(define y (integral (delay dy) y0 dt)) (define dy (stream-map f y))

y)

Теперь при любом вызове integral необходимо задерживать интегрируемый аргумент. Можно показать, что процедура solve работает, аппроксимируя e « 2.718 вычислением в точке y = 1 решения дифференциального уравнения dy/dt = y с начальным условием y(0) = 1:

(stream-ref (solve (lambda (y) y) 1 0.001) 1000)

2.716924

71 Не гарантируется, что эта процедура будет работать во всех реализациях Scheme, но для любой реализации должен найтись простой способ заставить подобную процедуру работать. Проблемы связаны с тонкими различиями в том, как реализации Scheme обрабатывают внутренние определения. (См. раздел 4.1.6.)


dyo

yo

Рис. 3.35: Диаграмма потока сигналов для решения линейного дифференциального уравнения второго порядка.

Упражнение 3.77.

Вышеприведенная процедура integral была аналогична «непрямому» определению бесконечного потока натуральных чисел из раздела 3.5.2. В виде альтернативы можно дать определение integral, более похожее на integers-starting-from (также в разделе 3.5.2):

(define (integral integrand initial-value dt) (cons-stream initial-value

(if (stream-null? integrand) the-empty-stream

(integral (stream-cdr integrand)

(+ (* dt (stream-car integrand)) initial-value)

dt))))

В системах с циклами эта реализациея порождает такие же проблемы, как и наша исходная версия integral. Модифицируйте процедуру так, чтобы она ожидала integrand как задержанный аргумент, а следовательно, могла быть использована в процедуре solve.

Упражнение 3.78.

Рассмотрим задачу проектирования системы обработки сигналов для решения гомогенных линейных дифференциальных уравнений второго порядка

d2y dy

Выходной поток, моделирующий у, порождается сетью, содержащей цикл. Этот цикл возникает потому, что значение d2y/dt2 зависит от значений у и dy/dt, а они оба получаются интегрированием d2y/dt2. Диаграмма, которую нам хотелось бы закодировать, показана на рис. 3.35. Напишите процедуру solve-2nd, которая в качестве аргументов берет константы a, b и dt и начальные значения y0 и dy0 для y и dy, и порождает поток последовательных значений y.


iR

+ VR

+ Vc

-aav

R

C

iL

VL

Рис. 3.36: Последовательная RLC-цепь

Упражнение 3.79.

Обобщите процедуру solve-2nd из упражнения 3.78 так, чтобы с ее помощью можно было решать дифференциальные уравнения второго порядка общего вида d2y/dy2 = f (dy/dt,y).

Упражнение 3.80.

Последовательная RLC-цепь (series RLC circuit) состоит из резистора, конденсатора и катушки индуктивности, соединенных последовательно, как показано на рис. 3.36. Если сопротивление, индуктивность и емкость равны, соответственно, R, L и C, то отношения между напряжением v и током i на трех элементах описываются уравнениями

vr =

vl

а цепь диктует соотношения

ic

iR = vc

=L

=C

iRR diL ~dt dvc

iL = -ic = vl + VR

Сочетание этих условий показывает, что состояние цепи (характеризуемое через vc, напряжение на конденсаторе, и iL, ток через катушку) описывается парой дифференциальных уравнений

dvc diL 1

dt

L

vc

С

R

L

iL

Диаграмма потока сигналов, представляющая эту систему дифференциальных уравнений, показана на рисунке 3.37.

Напишите процедуру RLC, которая в качестве аргументов берет параметры цепи R, L и C и точность по времени dt. Подобно процедуре RC из упражнения 3.73, RLC должна порождать процедуру, которая берет начальные значения переменных состояния vCo и iLo и порождает (через cons) пару потоков состояния vc и iL. С помощью RLC породите пару потоков, которая моделирует поведение RLC-цепи c K = 1 ом, C = 0.2 фарад, L =1 генри, dt = 0.1 секунды, и начальными значениями iLo =0 ампер и

vco

10 вольт.

i

C

+



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120] [стр.121] [стр.122] [стр.123] [стр.124] [стр.125] [стр.126] [стр.127] [стр.128] [стр.129] [стр.130] [стр.131] [стр.132] [стр.133] [стр.134] [стр.135] [стр.136] [стр.137] [стр.138] [стр.139] [стр.140] [стр.141] [стр.142] [стр.143] [стр.144] [стр.145] [стр.146] [стр.147] [стр.148] [стр.149] [стр.150] [стр.151] [стр.152] [стр.153] [стр.154] [стр.155] [стр.156] [стр.157] [стр.158] [стр.159] [стр.160] [стр.161] [стр.162] [стр.163] [стр.164] [стр.165] [стр.166] [стр.167] [стр.168] [стр.169] [стр.170] [стр.171] [стр.172] [стр.173] [стр.174] [стр.175] [стр.176] [стр.177] [стр.178] [стр.179] [стр.180] [стр.181] [стр.182] [стр.183] [стр.184] [стр.185] [стр.186] [стр.187] [стр.188] [стр.189] [стр.190] [стр.191] [стр.192] [стр.193] [стр.194] [стр.195] [стр.196]