Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[84]

A-B-

полу-

полусумматор

УюшЧ-

сумматор

SUM

-Cout

Рис. 3.26: Сумматор.

Преимущество этого определения в том, что теперь мы можем использовать half-adder как строительный блок при создании более сложных схем. Например, на рисунке 3.26 изображен сумматор (full-adder), состоящий из двух полусумматоров и ИЛИ-элемента.26 Сумматор можно сконструировать так:

(define (full-adder a b c-in sum c-out) (let ((s (make-wire)) (c1 (make-wire)) (c2 (make-wire))) (half-adder b c-in s c1) (half-adder a s sum c2) (or-gate c1 c2 c-out)

ok))

Определив full-adder как процедуру, мы можем ее использовать как строительный блок для еще более сложных схем. (См., например, упражнение 3.30.)

В сущности, наша имитация дает инструмент, с помощью которого строится язык описания схем. Принимая общую точку зрения на языки, с которой мы приступили к изучению Лиспа в разделе 1.1, можно сказать, что элементарные функциональные элементы являются примитивами языка, связывание их проводами представляет собой средство комбинирования, а определение шаблонных схем в виде процедур служит средством абстракции.

Элементарные функциональные элементы.

Элементарные функциональные элементы изображают «силы», через посредство которых изменение сигнала в одном проводе влечет изменение сигнала в других проводах. Для построения функциональных элементов мы будем пользоваться следующими операциями над проводами:

•(get-signal (провод)) возвращает текущее значение сигнала в проводе.

•(set-signal! (провод) (новое-значение)) заменяет значение сигнала в проводе на указанное.

•(add-action! (провод) (процедура без аргументов)) указывает, чтобы процедура-аргумент вызывалась каждый раз, когда сигнальный провод изменяет значение. Такие процедуры служат передаточным механизмом,

26Сумматор - основной элемент схем, используемых для сложения двоичных чисел. Здесь A и B - биты на соответствующих позициях двух складываемых чисел, а Сш - бит переноса из позиции на одну правее. Схема генерирует SUM, бит суммы для соответствующей позиции, и Cout, бит переноса для распространения налево.


с помощью которого изменение значения сигнала в одном проводе передается другим проводам. В дополнение, мы будем пользоваться процедурой after-delay, которая принимает значение задержки и процедуру. Она выполняет процедуру после истечения задержки.

При помощи этих процедур можно определить элементарные функции цифровой логики. Чтобы соединить вход с выходом через инвертор, мы используем add-action! и ассоциируем со входным проводом процедуру, которая будет вызываться всякий раз, когда сигнал на входе элемента изменит значение. Процедура вычисляет logical-not (логическое отрицание) входного сигнала, а затем, переждав inverter-delay, устанавливает выходной сигнал в новое значение:

(define (inverter input output) (define (invert-input)

(let ((new-value (logical-not (get-signal input)))) (after-delay inverter-delay (lambda ()

(set-signal! output new-value))))) (add-action! input invert-input)

ok)

(define (logical-not s) (cond ((= s 0) 1) ((= s 1) 0)

(else (error "Неправильный сигнал" s))))

И-элемент устроен немного сложнее. Процедура-действие должна вызываться, когда меняется любое из значений на входе. Она при этом через процедуру, подобную logical-not, вычисляет logical-and (логическое И) значений сигналов на входных проводах, и затем требует, чтобы изменение значения выходного провода произошло спустя задержку длиной в and-gate-delay.

(define (and-gate al a2 output) (define (and-action-procedure) (let ((new-value

(logical-and (get-signal a1) (get-signal a2)))) (after-delay and-gate-delay (lambda ()

(set-signal! output new-value))))) (add-action! a1 and-action-procedure) (add-action! a2 and-action-procedure)

ok)

Упражнение 3.28.

Определите ИЛИ-элемент как элементарный функциональный блок. Ваш конструктор or-gate должен быть подобен and-gate.

Упражнение 3.29.

Еще один способ создать ИЛИ-элемент - это собрать его как составной блок из И-элементов и инверторов. Определите процедуру or-gate, которая это осуществляет. Как время задержки ИЛИ-элемента выражается через and-gate-delay и inverter-delay?


A1 Bl

FA

S1

A2B2C2 A3B3

C

FA

S2

FA

C2

C3

C

*n n

FA

n-1

Cn=0

Рис. 3.27: Каскадный сумматор для n-битных чисел.

Упражнение 3.30.

На рисунке 3.27 изображен каскадный сумматор (ripple-carry adder), полученный выстраиванием в ряд n сумматоров. Это простейшая форма параллельного сумматора для сложения двух n-битных двоичных чисел. На входе мы имеемA3,... An и Bi,

B2, B3, ... Bn - два двоичных числа, подлежащих сложению (каждый из и имеет значение либо 0, либо 1). Схема порождает Si, S3, ... Sn - первые n бит суммы, и C - бит переноса после суммы. Напишите процедуру riple-carry-adder, которая бы моделировала эту схему. Процедура должна в качестве аргументов принимать три списка по n проводов в каждом (A, и S), а также дополнительный провод C. Главный недостаток каскадных сумматоров в том, что приходится ждать, пока сигнал распространится. Какова задержка, требуемая для получения полного вывода n-битного каскадного сумматора, выраженная в зависимости от задержек И-, ИЛИ-элементов и инверторов?

S

S

n

Представление проводов

Провод в нашей имитации будет вычислительным объектом с двумя внутренними переменными состояния: значение сигнала signal-value (вначале равное 0) и набор процедур-действий action-procedures, подлежащих исполнению, когда сигнал изменяется. Мы реализуем провод в стиле с передачей сообщений, как набор локальных процедур плюс процедура диспетчеризации, которая выбирает требуемую внутреннюю операцию. Точно так же мы строили объект-банковский счет в разделе 3.l.l.

(define (make-wire)

(let ((signal-value 0) (action-procedures ())) (define (set-my-signal! new-value) (if (not (= signal-value new-value))

(begin (set! signal-value new-value) (call-each action-procedures))

done))

(define (accept-action-procedure! proc)

(set! action-procedures (cons proc action-procedures))

(proc))

(define (dispatch m)

(cond ((eq? m get-signal) signal-value)

((eq? m set-signal!) set-my-signal!)

((eq? m add-action!) accept-action-procedure!)



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120] [стр.121] [стр.122] [стр.123] [стр.124] [стр.125] [стр.126] [стр.127] [стр.128] [стр.129] [стр.130] [стр.131] [стр.132] [стр.133] [стр.134] [стр.135] [стр.136] [стр.137] [стр.138] [стр.139] [стр.140] [стр.141] [стр.142] [стр.143] [стр.144] [стр.145] [стр.146] [стр.147] [стр.148] [стр.149] [стр.150] [стр.151] [стр.152] [стр.153] [стр.154] [стр.155] [стр.156] [стр.157] [стр.158] [стр.159] [стр.160] [стр.161] [стр.162] [стр.163] [стр.164] [стр.165] [стр.166] [стр.167] [стр.168] [стр.169] [стр.170] [стр.171] [стр.172] [стр.173] [стр.174] [стр.175] [стр.176] [стр.177] [стр.178] [стр.179] [стр.180] [стр.181] [стр.182] [стр.183] [стр.184] [стр.185] [стр.186] [стр.187] [стр.188] [стр.189] [стр.190] [стр.191] [стр.192] [стр.193] [стр.194] [стр.195] [стр.196]