Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[3]

Кр.общ Кг1 + Кг2 + ...+ Km,

Однако коэффициент Кг дает неполное представление о нелинейных искажениях в усилителе, так как он не учитывает сигналы комбинационных частот, образующиеся в результате интерференции между отдельными составляющими сложного колебания. Наиболее заметны нелинейные искажения из-за комбинационных частот, возникающие при подаче на усилитель двух и большего числа синусоидальных сигналов. Особенно заметны комбинационные частоты видаfl - f2, fl - 2f2, 2f1 - f2, так как они, как правило, не содержатся в спектре даже сложного входного сигнала.

Для высококачественных усилителей часто вводят еще один показатель, характеризующий их нелинейность, - коэффициент интермодуляционных искажений Ким.и. При измерении Ким.и на вход усилителя подают два гармонических колебания с частотами: f1=50... 100 Гц и f2=5... 10 кГц при отношении амплитуд UBX(f1)/UBX(f2)=4/l. Коэффициент К,., равен отношению амплитуды выходного напряжения разностной частоты fz -fi к амплитуде выходного напряжения частоты fi:

"Trj1* •100%-

Допустимое значение Кими<0,1 ... 1%. Исследования авторов показывают, что Кими= (3... 5) Кг. Учитывая это и сложность измерения коэффициента интермодуляционных искажений, авторы не измеряли Кимк в усилителях, схемы которых приведены в книге.

Нелинейные искажения значительно зависят от амплитуды подаваемого на вход сигнала. На рис. 8 показан характер зависимости коэффициента Кг от мощности на выходе усилителя. Эта кривая является основной характеристикой для оценки нелинейных искажений. Она служит также для определения максимальной полезной мощности усилителя по заданному Кг.

Коэффициент гармоник задается, как правило, для большого уровня входного сигнала. Для транзисторных усилителей мощности характерно увеличение нелинейных искажений при весьма малых уровнях входного сигнала, что вызвано искажениями типа «ступенька» или «центральная отсечка». Поэтому для полной оценки качества усилителя целесообразно контролировать Кг также при малых уровнях входных сигналов. В устройствах, схемы которых даны в книге, коэффициент гармоник измерялся на малых уровнях входного сигнала при выходной мощности 50 мВт.

т

1

V S

Рис. 8. Зависимость коэффициента нелинейных искажений от мощности на выходе усилителя ЗЧ

В основном нелинейные искажения возникают в оконечном и предоконечном каскадах. Для оконечных усилителей вносимые нелинейные искажения различны на разных частотах. В области граничных частот полосы пропускания они возрастают (при неизменной амплитуде входного сигнала). Это объясняется реактивным характером сопротивления нагрузки оконечных транзисторов и связанным с этим изменением формы динамической характеристики на крайних частотах полосы пропускания.

Допустимые нелинейные искажения зависят от назначения усилителя. Так, в усилителях 34, используемых в радиовещании и бытовой звуковоспроизводящей аппаратуре, коэффициент гармоник по ГОСТ 11157 - 74 должен составлять 1... 2%. В высококачественной профессиональной аппаратуре Кг<0,05%.

В последние годы резко улучшились параметры высококлассной звуковоспроизводящей аппаратуры. Особенно заметна тенденция к снижению нелинейных искажений. Появились усилители 34, у которых коэффициент Кг< 0,0005%. Достижение чрезвычайно малых нелинейных искажений связано с применением большого количества транзисторов с высоким коэффициентом усиления и установлением глубокой ООС. Последнее обстоятельство приводит к ухудшению динамических (скоростных) характеристик, заключающемуся в том, что резкий скачок напряжения на выходе запаздывает по отношению к вызывающему его скачку на входе. Это приводит к «жесткому», «транзисторному» звучанию, исчезает мягкость, бархатистость звука при субъективном восприятии музыкальной программы.

Проблема заметности коэффициента гармоник в диапазоне 1... 0,0005% не имеет однозначного толкования. Можно лишь утверждать, что если получены малые нелинейные искажения, и они достигнуты не за счет ухудшения других параметров усилителя, то это говорит о совершенстве усилительного тракта.

Однако следует отметить, что испытание усилителей со сверхмалыми нелинейными искажениями предъявляет весьма высокие требования к нелинейным искажениям источника испытательных сигналов. Лучшие отечественные звуковые генераторы типа ГЗ-102 обеспечивают Кг не менее 0,05%, т. е. имеют тот же порядок, что и нелинейные искажения, вносимые самим усилителем. Разрешающая способность измерителей


нелинейных искажений С6-5 также составляет от 0,02 до 0,03%. Поэтому точные измерения сверхмалых нелинейных искажений весьма затруднительны.

Для испытаний сверхлинейных усилителей следует пользоваться прецизионными звуковыми генераторами и анализаторами спектра. Хорошие результаты при оценке сверхмалых нелинейных искажений дает метод компенсации [4].

При испытании описанных в книге усилителей использовался генератор ГЗ-102, предварительно испытанный анализатором спектра и обеспечивающий Кг <0,02%, и измеритель нелинейных искажений С6-5 с разрешающей способностью 0,02%. Если иногда указывается значение Кг, меньшее или равное разрешающей способности измерений, то значит Кт усилителя и входного испытательного сигнала не отличались друг от друга.

При отсутствии сигнала на входе усилителя на его выходе действует некоторое (обычно небольшое) напряжение. Это напряжение обусловлено в оо« новном его собственными помехами, среди которых различают фон, наводки, микрофонный эффект, тепловые шумы резисторов и пассивных элементов в активными потерями, шумы усилительных элементов.

Фон обычно появляется в результате недостаточной фильтрации пульсирующего напряжения источника питания, работающего от сети переменного тока. Гармонические составляющие фона кратны частоте питающей сети.

Наводки образуются из-за паразитных электрических, магнитных, гальванических или электромагнитных связей цепей усилителя с источниками помех.

Микрофонный эффект представляет собой результат преобразования механических колебаний элементов усилителя в электрические, проходящие на выход усилителя. Спектр этих колебаний занимает диапазон 0,1 - 10000 Гц. Он заметно проявляется у интегральных усилителей с большим коэффициентом усиления, выполненных на одной подложке. Чтобы устранить его, используют рациональную конструкцию элементов усилителя, более надежное их крепление, демпфирование, применяют амортизирующие устройства.

Тепловые шумы обусловлены тепловым беспорядочным (случайным) движением в объеме проводника (или полупроводника) свободных носителей зарядов (например, электронов). В результате на концах проводника, обладающего некоторым сопротивлением, действует случайная, флуктуационная ЭДС, называемая ЭДС шума Еш. Поскольку она периодическая функция времени, то ее спектр является сплошным и практически равномерным в диапазоне частот от нуля до сотен мегагерц. Шум с подобным спектром называют белым.

Фон, наводки и микрофонный эффект в усилителе можно, в принципе, уменьшить до любых заданных значений. Тепловые же шумы и шумы усилительных элементов принципиально неустранимы. Обычно удается лишь минимизировать долю шумов, создаваемых усилительными элементами [5]. Практические способы подавления помех и снижения шумов в усилителях 34 будут описаны далее.

Шумовые свойства высококачественных усилителей оценивают отношением сигнал-шум. Под этой величиной понимают отношение выходного напряжения сигнала при номинальной выходной мощности усилителя РНом к суммарному напряжению шумов на выходе. Обычно его выражают в децибелах. В усилителях высшего класса отношение сигнал-шум достигает 60... 110 дБ.

Динамический диапазон усилителя - это отношение максимального и минимального входного сигнала усилителя при заданном уровне Кг:

Оу - ивх тах/ивх min.

Для высококачественного усилителя максимальное значение входного сигнала ограничивается нелинейностью амплитудной характеристики и принимается рав-вым номинальному входному напряжению ивхном, обеспечивающему номинала ную выходную мощность усилителя при заданном коэффициенте гармоник, т. е.

ивх тах- ивх.ном.

Минимальное входное напряжение иВх min должно выбираться таким образом, чтобы собственные помехи и шумы усилителя не маскировали выходной сигнал.

В предельном случае основными помехами в усилителе являются шумы, при этом

ивх min Кп Uz цвх, где Kn - UBxmin/UzLijl - коэффициент помехозащищенности. Отсюда динамический диапазон усилителя

Dy ивх.ном/(Кп ш.вх).

Видно, что отношение сигнал-шум, равное иВх.ном/игш-В1, определяет достижимый динамический диапазон усилителя. Динамический диапазон является важным техническим показателем усилителя и обычно задается ГОСТ. Для лучших высококачественных усилителей Dy>110 дБ. Источники звуковых сигналов имеют собственный динамический диапазон, равный отношению максимального Еи max и минимального Ел min ЭДС источника сигнала; DC=EH тах/Еи min и в логарифмических единицах Dc [дБ] = 201gDc.

Динамический диапазон звучания симфонического оркестра может превышать 80 дБ, художественного чтения - 30 дБ.

Для усиления сигнала с допустимыми нелинейными искажениями и помехозащищенностью необходимо, чтобы Dy>Dc.

Для увеличения динамического диапазона усилителя необходимо уменьшать уровень собственных помех,


использовать усилительные элементы с более линейной характеристикой (применить высоковольтные мощные выходные транзисторы) и применять ручную или автоматическую регулировку усиления.

В приведенных в книге показателях для динамического диапазона коэффициент помехозащищенности Кп принят равным единице. Поэтому в технических характеристиках описанных функциональных узлов приводятся только значения отношения сигнал-шум.

СЕЛЕКТОРЫ ВХОДНЫХ СИГНАЛОВ

На вход современного звуковоспроизводящего комплекса подают сигналы от самых разных источников звуковых программ, таких как электрофон, магнитофон, тюнер, радиоприемник, радиотрансляционная сеть, телевизор, микрофон и др. Каждый из источников подключают к усилителю с помощью отдельного разъема. Как правило, для этого используют унифицированные штепсельные соединители ОНЦ-ВГ-4-5/16-Р ,(прежнее название СГ-5) и ОНЦ-ВГ-4-5/16-В (прежнее название СШ-5). Разводка цепей в них унифицирована и осуществляется в соответствии с ГОСТ 12368 - 68, учитывающим международные нормы.

На вход предварительного усилителя звуковой сигнал с входных разъе-ков поступает через селектор входного сигнала, назначение которого - избирательное подключение на вход усилителя 34 выбранного слушателем источника звуковой программы. Часто с помощью селектора коммутируют источники звуковых сигналов, чтобы обеспечить запись на магнитофон, наложение сигналов с микрофона на отдельные звуковые программы и т. д.

В селекторах входного сигнала используются механические или электронные коммутаторы. Механические коммутаторы проще по конструкции, не имеют нелинейных цепей. Однако их громоздкость, расположение органов управления и коммутации вдали от переключаемых малосигнальных цепей, дребезг контактов создают большие проблемы в получении хорошей помехозащищенности и минимума наводок. К тому же они являются источником тресков и щелчков. Для электронных коммутаторов свойственно разделение органов управления и коммутации и разнесение их в пространстве, что предоставляет конструктору большую свободу в компоновке проектируемого аппарата, позволяет приблизить элементы коммутации непосредственно к переключаемым малосигнальным цепям и входам предварительных чувствительных каскадов усилителя, упрощает настройку коммутируемых цепей.

Исполнительные устройства электронных коммутаторов могут быть выполнены как на электромагнитных реле, так и на чисто электронных узлах, построенных на аналоговых переключателях (например, на микросхеме К564КТЗ) или мультиплексерах аналоговых сигналов (например, на К564КШ, К564КП2 и т.п.) или на полевых транзисторах. В случае применения электромагнитных реле конструкция получается громоздкой и дорогой, а когда используются электронные узлы, возникают проблемы, связанные с прохождением слабых сигналов через нелинейные элементы.

Цепи управления аналоговым переключателем строятся либо на базе механического переключателя, либо на базе цифровых микросхем.

При конструировании селекторов входных сигналов стремятся уменьшить переходные помехи, т. е. просачивание сигнала из одного канала в другой. Для высококачественного звуковоспроизведения достаточно получить затухание переходных помех примерно 50 дБ на частоте 1 кГц. Затухание измеряют как отношение выходного напряжения селектора к напряжению другого, неподключенного канала.

Общим показателем качества селекторов входных сигналов также является число коммутируемых источников сигналов. Кроме того, каждому типу селектора (механическому или электронному) присущи свои технические характеристики. Они приводятся при описании конкретной схемы.

Селектор входных сигналов на переключателе галетного типа. Рассматриваемый селектор позволяет подключать до шести источников звуковых программ (из них два проигрывателя и два магнитофона), вести перезапись с магнитофона на магнитофон или записывать любую из программ на два магнитофона с одновременным ее прослушиванием.

Принципиальная схема одного канала селектора входных сигналов приведена на рис. 9. Сигнал с одного из разъемов XS1 - XS4 поступает на переключатель источников программ SA1. Узел А1 корректирует АЧХ, если усилитель соединяется с электромагнитной головкой звукоснимателя. К разъемам XS5, XS6 подключают два магнитофона как на запись, так и на воспроизведение. При наличии у них сквозного тракта переключатель SA2 позволяет прослушивать через усилитель записываемую программу или уже сделанную запись (так называемый режим «мониторинг»). Переключателем SA3 коммутируют магнитофоны в режиме «Запись». Они либо соединяются с разъемами XS1 - XS4 (и ведется запись любой из программ), либо между собой (при перезаписи). Переключателем SA4 устанавливают режим работы усилителя «Стерео» или «Моно». Резистор R5 уменьшает взаимное влияние каналов при их параллельном включении в режиме «Моно».

В качестве входных разъемов можно использовать пятиконтактные штепсельные соединители ОНЦ-ВГ-4-5/16-Р или ОНЦ-КГ-4-5/16-Р, предназначенные для печатного монтажа. Для переключателей входов и рода работ практически можно использовать любые имеющиеся галетные переключатели, например, типа пгз.

Селектор входных сигналов: на кнопочных переключателях типа П2К. В селекторах входных сигналов широко используются переключатели П2К. В качестве примера на рис. 10 приведена схема одного из них. Этот селектор позволяет подключить четыре источника звуковых программ и вести запись любой программы на



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32]