Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[18]

Рассмотрим основные характеристики эмиттерного повторителя:

R IR

коэффициент усиления по току KI » (1 + b)

коэффициент усиления по напряжению

K /

определяется KU = + k ь ) < 1;

входное сопротивление определяется R

R

учетом 100%-й ООС (вос=1)

= R, R0 R

1 2 в

Рис. 58. Усилительный каскад с ОК

При больших сопротивлениях R1 и R2 входное сопротивление R = (В + 1)R RH .

Обычно в практических схемах достигает 200-300 кОм при R10 кОм. Выходное сопротивление повторителя R* и составляет десятки Ом. Эмиттерные повторители используются, в основном, в качестве согласующего элемента.

На базе транзисторного усилителя с ОЭ можно построить источник постоянного тока. Для этого необходимо обеспечить постоянный базовый ток транзистора или ввести постоянную обратную связь по току.

Для повышения коэффициента усиления транзисторного каскада с ОЭ в качестве резистора часто используется нелинейный элемент, статическое сопротивление которого значительно меньше его дифференциального сопротивления. В этом случае падение напряжения на этом элементе от протекания тока будет определяться его статистическим сопротивлением, а отклонение выходного напряжения - динамическим сопротивлением. Роль нелинейного элемента выполняет транзистор.

Для увеличения коэффициента 1121э транзистора можно использовать каскадное включение нескольких транзисторов. Такие транзисторы называются составными транзисторами или схемами Дарлингтона.

В составном транзисторе суммарный коэффициент передачи тока равен произведению токов передачи отдельных транзисторов h

21s

21э121э2

с

3.6. Дифференциальный усилитель

Дифференциальный усилитель представляет собой мостовые усилительные каскады параллельного типа. Они обладают высокой стабильностью параметров при воздействии различных дестабилизирующих


факторов, большим коэффициентом усиления дифференциальных сигналов и высокой степенью подавления синфазных помех. Усилитель состоит из двух каскадов, у которых имеется общий эмиттерный резистор (рис.59).

I +ш

а)б)

Рис. 59. Дифференциальный усилительный каскад (а) и его эквивалентная схема (б)

Элементы схемы образуют мост, в одну диагональ которого включен источник питания Un, а в другую сопротивление нагрузки Rн.Для балансировки моста(=0)необходимо,чтобы

U -( UnRVT1 )/ U - UnRVT2/или R R - R R

Ua /(Rk1 + RVT1) U в /(Rk2 + RVT2)RVT1RK2 RVT2RK1.

где RVT1 и RVT2 выходные сопротивления транзисторов VT1 и VT2. Таким образом, можно утверждать, что если элементы схемы будут полностью идентичны, то выходное напряжение будет оставаться постоянным.

U -aik1rk1 -aik2rk2.

Дифференциальный усилитель имеет два входа и два выхода поэтому для выходного напряжения можно записать U -U , -U 2 --K.U , -(-K2U 2),

-Гвыхвых1вых21 вх1 V 2 вх2 / ~

где К1 и К2 соответственно коэффициенты усиления каскадов на транзисторах VT1 и VT2.

В общем случае, если - и =х1 - Uвх2=2Uвхl

U -- U вх (K1 + K2)/ -- U К ,

вых/7вх gy *

где - (K1+- коэффициент усиления дифференциального усилителя.

В отличие от полезного сигнала, который поступает на входы дифференциального усилителя в противофазе, на входы усилителя действуют сигналы, совпадающие по фазе. Такие сигналы называются синфазными. Появление данных сигналов обусловлено действием различных дестабилизирующих факторов, например, изменением температуры


окружающей среды, изменением питающих напряжений наводками внешних электромагнитных полей. Для идеального дифференциального усилителя синфазные сигналы полностью подавляются. В реальных усилителях из-за не идентичности каскадов подавление будет не полным и характеризуется коэффициентом подавления синфазных помех Кпсф.

Величина Кпсф в современных дифференциальных усилителях достигает 104--106. Коэффициент Кпсф в значительной степени характеризует дрейф нуля усилителя, т.е. изменение выходного напряжения при постоянном входном сигнале. Для снижения дрейфа нуля производят подбор пар транзисторов с одинаковыми параметрами и увеличение Для увеличения Rэ в эмиттерную цепь ставится не пассивный резистор, а нелинейный двухполюсник, например транзисторный источник тока на биполярном или полевом транзисторе. Эти схемы при небольшом статическом сопротивлении обладают большим дифференциальным сопротивлением.

Для увеличения коэффициента усиления в современных дифференциальных усилителях вместо резисторов используют активную нагрузку, выполненную на транзисторах. Входное сопротивление дифференциального усилителя может быть существенно увеличено при использовании в каскадах полевых транзисторов.

3.7. Многокаскадные усилители

Коэффициент усиления одиночных транзисторных каскадов не превышает нескольких десятков. Поэтому для усиления слабых сигналов применяются многокаскадные усилители. Многокаскадные усилители строятся путем последовательного соединения отдельных усилительных каскадов (рис. 60).

1-1 1-г-"-

К1

К2

Кп-1

Кп

•с

3,

1

Рис. 60. Структурная схема многокаскадного усилителя

В многокаскадных усилителях выходной сигнал предыдущего усилителя является входным сигналом для последующего каскада. Входное сопротивление многокаскадного усилителя определяется входным сопротивлением первого каскада, а выходное - выходным сопротивлением последнего каскада. Коэффициент усиления многокаскадного усилителя равен произведению коэффициентов усиления всех каскадов, входящих в него:

KU = KU1 KU2 - KUn, где KU1, KU2, ... KUn -коэффициенты усиления отдельных каскадов.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52]