Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[4]

3. Словари

3.1 Хеш-таблицы

Для работы с словарем требуются поиск, вставка и удаление. Один из наиболее эффективных способов реализации словаря - хеш-таблицы. Среднее время поиска элемента в них есть O(1), время для наихудшего случая - O(n). Прекрасное изложение хеширования можно найти в работах Кормена[2] и Кнута[1]. Чтобы читать статьи на эту тему, вам понадобится владеть соответствующей терминологией. Здесь описан метод, известный как связывание или открытое хеширование[3]. Другой метод, известный как замкнутое хеширование[3] иёё заёбибау адресация[1], здесь не обсуждаются. Ну, как?

Хеш-таблица - это обычный массив с необычной адресацией, задаваемой хеш-функцией. Например, на hashTable рис. 3.1 - это массив из 8 элементов. Каждый элемент представляет собой указатель на линейный список, хранящий числа. Хеш-функция в этом примере просто делит ключ на 8 и использует остаток как индекс в таблице. Это дает нам числа от 0 до 7 Поскольку для адресации в hashTable нам и нужны числа от 0 до 7, алгоритм гарантирует допустимые значения индексов.

HashTable

Рис. 0.1: Хеш-таблица

Чтобы вставить в таблицу новый элемент, мы хешируем ключ, чтобы определить список, в который его нужно добавить, затем вставляем элемент в начало этого списка. Например, чтобы добавить 11, мы делим 11 на 8 и получаем остаток 3. Таким образом, 11 следует разместить в списке, на начало которого указывает hashTable[3]. Чтобы найти число, мы его хешируем и проходим по соответствующему списку. Чтобы удалить число, мы находим его и удаляем элемент списка, его содержащий.

Если хеш-функция распределяет совокупность возможных ключей равномерно по множеству индексов, то хеширование эффективно разбивает множество ключей. Наихудший случай - когда все ключи хешируются в один индекс. При этом мы работаем с одним линейным списком, который и вынуждены последовательно сканировать каждый раз, когда что-нибудь делаем. Отсюда видно, как важна хорошая хеш-функция. Здесь мы рассмотрим лишь несколько из


возможных подходов. При иллюстрации методов предполагается, что unsigned char располагается в 8 бедах, unsigned short int - в 16, unsigned long int - в 32.

•Деление (размер таблицы hashTableSize - простое число). Этот метод использован в последнем примере. Хеширующее значение hashValue, изменяющееся от 0 до (hashTableSize - 1), равно остатку от деления ключа на размер хеш-таблицы. Вот как это может выглядеть:

typedef int hashIndexType;

hashIndexType hash(int Key) {

return Key % hashTableSize;

Для успеха этого метода очень важен выбор подходящего значения hashTableSize. Если, например, hashTableSize равняется двум, то для четных ключей хеш-значения будут четными, для нечетных - нечетными. Ясно, что это нежелательно - ведь если все ключи окажутся четными, они попадут в один элемент таблицы. Аналогично, если все ключи окажутся четными, то hashTableSize, равное степени двух, попросту возьмет часть битов Key в качестве индекса. Чтобы получить более случайное распределение ключей, в качестве hashTableSize нужно брать простое число, не слишком близкое к степени

•Мультипликативный метод (размер таблицы hashTableSize есть степень 2n). Значение Key умножается на константу, затем от результата берется необходимое число

битов. В качестве такой константы Кнут[1] рекомендует золотое сечение -1) /2 =

0.6180339887499. Пусть, например, мы работаем с байтами. Умножив золотое сечение на 28, получаем 158. Перемножим 8-битовый ключ и 158, получаем 16-битовое целое. Для таблицы длиной 25 в качестве хеширующего значения берем 5 младших битов младшего слова, содержащего такое произведение. Вот как можно реализовать этот метод:

/* 8-bit index */

typedef unsigned char hashIndexType; static const hashIndexType K = 158;

/* 16-bit index */

typedef unsigned short int hashIndexType; static const hashIndexType K = 40503;

/* 32-bit index */

typedef unsigned long int hashIndexType; static const hashIndexType K = 2654435769;

/* w=bitwidth(hashIndexType), size of table=2**m */ static const int S = w - m;

hashIndexType hashValue = (hashIndexType)(K * Key) >> S;


Пусть, например, размер таблицы hashTableSize равен 1024 (210). Тогда нам достаточен 16-битный индекс и S будет присвоено значение 16 - 10 = 6. В итоге получаем:

typedef unsigned short int hashIndexType;

hashIndexType hash(int Key) {

static const hashIndexType K = 40503;

static const int S = 6;

return (hashIndexType)(K * Key) >> S;

•Аддитивный метод для строк переменной длины (размер таблицы равен 256). Для строк переменной длины вполне разумные результаты дает сложение по модулю 256. В этом случае результат hashValue заключен между 0 и 244.

typedef unsigned char hashIndexType;

hashIndexType hash(char *str) { hashIndexType h = 0; while (*str) h += *str++; return h;

•Исключающее ИЛИ для строк переменной длины (размер таблицы равен 256). Этот метод аналогичен аддитивному, но успешно различает схожие слова и анаграммы (аддитивный метод даст одно значение для XY и YX). Метод, как легко догадаться, заключается в том, что к элементам строки последовательно применяется операция "исключающее или". В нижеследующем алгоритме добавляется случайная компонента, чтобы еще улучшить результат.

typedef unsigned char hashIndexType; unsigned char Rand8[256];

hashIndexType hash(char *str) { unsigned char h = 0;

while (*str) h = Rand8[h Л *str++]; return h;

Здесь Rand8 - таблица из 256 восьмибитовых случайных чисел. Их точный порядок не критичен. Корни этого метода лежат в криптографии; он оказался вполне эффективным [4].

•Исключающее ИЛИ для строк переменной длины (размер таблицы < 65536). Если мы хешируем строку дважды, мы получим хеш-значение для таблицы любой длины до 65536. Когда строка хешируется во второй раз, к первому символу прибавляется 1. Получаемые два 8-битовых числа объединяются в одно 16-битовое.

typedef unsigned short int hashIndexType; unsigned char Rand8[256];

hashIndexType hash(char *str) { hashIndexType h; unsigned char hi, h2;

if (*str == 0) return 0; hi = *str; h2 = *str + 1;



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15]