Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[0]

Д.Г.Поляк, Ю.К.Есеновский-Лашков

ЭЛЕКТРОНИКА АВТОМОБИЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ

© Издательство «Машиностроение». 1987

ПРЕДИСЛОВИЕ

К числу важнейших факторов, определяющих технический уровень современных автомобилей, относится степень их оснащенности электронными устройствами. Поэтому разработка электронных систем управления агрегатами автомобилей является весьма актуальной задачей для отечественного автомобилестроения.

В настоящее время накоплен значительный опыт применения электронной аппаратуры в автомобилях. Использование этого опыта является важным условием ускорения разработок новых, более совершенных электронных устройств для автомобилей.

Целью написания настоящей книги является ознакомление инженерно-технических работников автомобильной и других отраслей промышленности с изделиями автомобильной электроники, применяемыми для управления агрегатами трансмиссии и тормозными системами автомобилей.

Материал данной книги подобран таким образом, чтобы его можно было использовать при создании новых электронных систем управления. С этой целью в книге приведены рекомендации по выбору для таких систем комплектующих изделий из числа большой их номенклатуры, выпускаемой отечественной промышленностью. Кроме того, один из основных разделов книги посвящен описанию ряда типовых функциональных узлов, которые могут быть использованы при создании электронных систем управления различными агрегатами автомобилей.

Часть материала книги представляет собой примеры конкретной реализации электронных систем управления агрегатами трансмиссии и тормозными системами автомобилей.

ВВЕДЕНИЕ

В «Основных направлениях экономического и социального развития СССР на 1986 - 1990 годы и на период до 2000 года» в числе основных задач автомобильной промышленности указано на необходимость применения электронных устройств для снижения удельного расхода топлива автомобилей.

В настоящее время непрерывно возрастает применение электронных устройств, начиная от легковых автомобилей особо малого класса и кончая большегрузными автомобилями и автобусами большой вместимости. При этом электронные устройства используют как для замены механических, гидравлических, пневматических и электромеханических систем управления, так и для создания принципиально новых систем автоматики автомобилей и автобусов.

В отличие от начальных периодов развития автомобильной электроники для современного ее периода характерно наличие следующих четырех направлений:

создание электронных устройств для замены ими традиционных узлов автомобильного электрооборудования (регуляторы напряжения, управление световой и звуковой сигнализацией, регуляторы систем отопления, кондиционирования, подогрева двигателя, тахометры, спидометры и т. д.);

применение электронных устройств (в том числе и с использованием ЭВМ) для непрерывного контроля и выдачи текущей информации об эксплуатационных показателях автомобиля (например, текущий расход топлива, целесообразность включения той или иной передачи, оптимальный режим движения и т. д.). К этой категории устройств следует отнести и системы диагностирования состояния агрегатов автомобиля;

разработка электронной аппаратуры управления зажиганием, топливоподачей и системами, обеспечивающими снижение токсичности отработавших газов двигателя;

создание электронных устройств для систем управления агрегатами трансмиссии, тормозными системами и другими узлами автомобиля (за исключением двигателя).

Применение электронной аппаратуры в системах управления агрегатами автомобиля создало возможность получения качественно новых их показателей, что в ряде случаев повлекло за собой целесообразность изменения конструкции самих агрегатов. Поэтому современная автомобильная электронная система управления фактически является комплексом собственно электронной аппаратуры и управляемых ею исполнительных устройств.


УСЛОВИЯ РАБОТЫ ЭЛЕКТРОННОЙ АППАРАТУРЫ

АВТОМОБИЛЕЙ

Основными внешними факторами, влияющими на работу электронной аппаратуры автомобилей, являются температура окружающей среды, диапазон изменения напряжения в бортовой сети, уровень помех (в цепях питания, а также полевых).

В зависимости от климатического исполнения изделий электрооборудования и места их установки на автомобиле (в моторном отделении, кабине или снаружи кузова и кабины) ГОСТ 3940 - 84 устанавливает различные диапазоны температуры окружающей среды, в пределах которых должна обеспечиваться работоспособность и сохранность изделий электрооборудования, в том числе и электронной аппаратуры. С учетом возможности установки электронной аппаратуры как в моторном отделении, так и вне его, исходя из ГОСТ 3940 - 84, следует ориентироваться на обеспечение ее работоспособности в диапазоне температур окружающей среды от - 40 до +70°С.

Наряду с этим в некоторых случаях оказывается необходимым предусматривать возможность работы аппаратуры в более широком диапазоне температур окружающей среды. В частности, при особо неблагоприятных условиях эксплуатации у некоторых моделей автомобилей максимальная температура в моторном отделении может достигать 90°С и даже 100°С. Когда автомобиль работает в холодных климатических зонах, то вероятно уменьшение температуры окружающей среды до - 60°С. При такой температуре должна обеспечиваться работоспособность аппаратуры систем управления такими агрегатами, как подогреватели двигателей и отопители салона автомобиля. За исключением этого особого случая, при столь низкой температуре отсутствует необходимость сразу же включать электронную аппаратуру, поскольку она должна вступать в действие только после прогрева двигателя и салона автомобиля. Однако необходимо, чтобы даже после длительного нахождения электронной аппаратуры при температуре до - 60 °С ее последующий прогрев до температуры - 40 °С обеспечивал требуемую работоспособность. Данное требование оговаривается ГОСТ 3940 - 84 применительно к исполнению ХЛ аппаратуры.

В соответствии с требованиями ГОСТ 3940 - 84 электронная аппаратура при номинальном напряжении иНОМ в бортовой сети, равном 12 В, должна сохранять работоспособность при изменении этого напряжения в пределах 10,8 - 15 В, а при номинальном напряжении, равном 24 В, в пределах 21,6 - 30 В.

С целью получения стабильных характеристик электронной аппаратуры ее, как правило, подключают к источнику стабилизированного напряжения. Для ряда серий интегральных микросхем, применяемых в электронной аппаратуре автомобилей, минимально допустимое напряжение питания составляет 10 В. Для получения такого стабилизированного напряжения при минимально возможном напряжении бортовой сети, равном 10,8 В (в случае Unoif= 12 В), требуется применять стабилизаторы напряжения только компенсационного типа, у которых наименьшая разность между входным и выходным напряжениями составляет десятые доли вольта. При ином = 24 В такое ограничение отпадает, но в этом случае более сложно решается проблема отвода теплоты от выходных элементов стабилизатора, поскольку в них имеется значительное падение напряжения и, следовательно, выделяется большая мощность.

Электронная аппаратура автомобилей работает в условиях самых различных помех. Основными из них являются помехи в цепях питания и полевые, возникающие в результате работы различных электромагнитных механизмов и устройств, действие которых приводит к искрообразованию. Необходимо подчеркнуть, что характер и уровень помех, действующих на электронную аппаратуру при работе электрооборудования автомобилей, зависит от большого числа факторов, в том числе от трассировки проводки, расположения агрегатов электрооборудования, исполнения коммутирующих элементов и т. д. Все эти факторы могут меняться в зависимости от модели автомобиля и даже при ее модернизации. Поэтому следует исходить из наихудших условий работы электронной аппаратуры в отношении воздействия на нее помех.

При обычных условиях работы электрооборудования автомобиля источниками питания электронной аппаратуры служат параллельно соединенные генератор и аккумуляторная батарея. Последняя является мощным фильтром для низкочастотных помех и надежно защищает от них электронную аппаратуру. Однако в случае отключения по какой-либо причине аккумуляторной батареи от цепи питания электронной аппаратуры условия ее работы резко ухудшаются в результате появления в цепи питания значительных перенапряжений.

Необходимо особо подчеркнуть, что в автомобиле практически невозможно применение известных высокоэффективных фильтров, поскольку при прохождении через такие фильтры тока нагрузки в них происходит падение напряжения порядка нескольких вольт. Такое большое падение напряжения неприемлемо по условиям питания аппаратуры, особенно для автомобилей с номинальным напряжением бортовой сети, равным 12 В. Поэтому проблема защиты электронной аппаратуры автомобилей от перенапряжений в цепях питания является особо сложной задачей.

Рассмотрим более подробно основные причины появления таких перенапряжений в бортовой сети автомобилей, оборудованных карбюраторным двигателем, т. е. имеющих батарейную систему зажигания. При движении автомобиля в дневное время от его бортовой сети отключены все мощные светотехнические приборы, и в этом случае ее нагрузкой являются только аппаратура системы зажигания и электронные приборы. Если при этих условиях аккумуляторная батарея будет отключена от бортовой сети, то в ней по-. явятся непрерывно повторяющиеся короткие импульсы напряжения с амплитудой 80 - 100 В (рис. 1,а), под


воздействием которых оказывается и электронная аппаратура. Такие импульсы возникают в результате коммутации тока в цепи катушки зажигания, имеющей значительную индуктивность.

I £U

Рис. 1. Изменение напряжения в бортовой сети автомобиля при отключенной аккумуляторной батарее: а - без элементов защиты от перенапряжений; б - с защитным стабилитроном

Опасные перенапряжения в бортовой сети могут возникнуть в автомобилях, оборудованных любым типом двигателя при следующих условиях:

двигатель работает с частотой вращения коленчатого вала, при которой генератор работает в режиме максимальной мощности;

аккумуляторная батарея находится в разряженном состоянии;

мощные потребители электроэнергии отключены от цепи питания (например, при эксплуатации автомобиля в дневное время).

В этом случае почти весь ток нагрузки генератора поступает в аккумуляторную батарею, а поскольку батарея находится в разряженном состоянии, в нее поступает зарядный ток большой силы. Для обеспечения такой силы зарядного тока генератор работает с током возбуждения максимальной силы. Если при данном режиме работы генератора по какой-либо причине (например, из-за нарушения контакта) произойдет отключение аккумуляторной батареи от бортовой сети, то это вызовет резкое уменьшение силы тока нагрузки генератора. Вследствие сравнительно большой электромагнитной постоянной времени цепи возбуждения генератора регулятор напряжения генератора не сможет одновременно со снижением силы тока нагрузки генератора уменьшить силу тока возбуждения для сохранения в заданных пределах; напряжения генератора. В результате произойдет быстрое увеличение напряжения генератора, которое при особо неблагоприятных условиях может достигнуть 150 - 200 В, а продолжительность действия этого напряжения составит 100 - 200 мс.

Значительные перенапряжения в цепях питания могут возникнуть не только при внезапном отключении аккумуляторной батареи, но и в тех случаях, когда двигатель работает с отключенной аккумуляторной батареей, а к бортовой сети подключен потребитель электроэнергии с изменяющейся в значительных пределах силой тока нагрузки. Таким потребителем, например, являются приборы аварийной стояночной световой сигнализации, при работе которой происходит периодическое включение и выключение мощных сигнальных ламп, в результате чего сила тока нагрузки генератора практически скачкообразно изменяется на 15 - 20 А.

Для того чтобы предохранить электронную аппаратуру от воздействия указанных перенапряжений, применяют различные способы защиты. Одним из способов является подключение между положительным полюсом бортовой сети и массой автомобиля мощного стабилитрона с опорным напряжением на 4 - 6 В больше максимального напряжения бортовой сети. Иногда последовательно с таким стабилитроном включают токоограничивающий резистор с небольшим сопротивлением (около десятых долей ома). При таком подключении стабилитрона в период действия импульсов напряжения через него будут проходить короткие



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41]